Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
m3_seminar:m3_seminar_2019:projects_ustutt:ep-control [2019/07/16 10:50] emjaym3_seminar:m3_seminar_2019:projects_ustutt:ep-control [2019/07/30 22:55] (current) – [Equilibrium-Point Control] stud_ustutt
Line 1: Line 1:
 ====== Equilibrium-Point Control ====== ====== Equilibrium-Point Control ======
  
-^ Autors | Name Surname, Name Surname, Name Surname Name Surname |+^ Autors | Pohl Steffen Manglkammer Philipp |
 ^ Betreuer | Marc Jacob | ^ Betreuer | Marc Jacob |
 ^ Bearbeitungsdauer | ca. 25 Stunden | ^ Bearbeitungsdauer | ca. 25 Stunden |
-^ Präsentationstermin 28.06.2018 |+^ Präsentationstermin dd.mm.yyyy |
  
 <note tip> <note tip>
Line 13: Line 13:
  
 ===== Introduction/Motivation ===== ===== Introduction/Motivation =====
-At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non providentsimilique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fugaEt harum quidem rerum facilis est et expedita distinctio. Nam libero temporecum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimusomnis voluptas assumenda est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandaeItaque earum rerum hic tenetur a sapiente delectusut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.+Basic EP-concept (EP = Equilibrium point) 
 + 
 +- The EP-Control System statesthat a set of two actuators can act like a human muscles Agonist/Antagonist principle. 
 + 
 +- The applied force depends on muscle length and stimulation: The longer the artificial musclethe more effective the stimulation in translated into force 
 + 
 +- The system is heading towards a certain joint angle depending on the realation of force and length of both actuators 
 + 
 +- Once the angle is reachedthe joint stiffness can be modified by equally increasing or decreasing the applied forces in the actuators 
 + 
 +- In our experimentthe used software defines sitffness and angle of the models joints which are automatically are translated in posesEach of these poses define an Equilibrium Point
  
 ===== Podcast ===== ===== Podcast =====
-Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur? 
  
-{{ :m3_seminar:m3_seminar_2018:projects_kit:teenage_mutant_hero_turtles_intro_uncut_german_.mp4 |}}+Movement approaches via poses: 
 + 
 +- The first set of poses was designed to be as detailed as possible and utilized every possibly relevant angle 
 + 
 +- The second set only used simple movement patterns. The more complex movements then resulted from the passive mechanics of the muscle system 
 + 
 +Resulting movement: 
 + 
 +- the first set of poses result in failure due to loss of balance 
 + 
 +- the second set shows a good result even without specific modelling 
 + 
 +{{ :m3_seminar:m3_seminar_2019:projects_ustutt:biorobotikpodcast.mp4 |}}
 ===== Summary ===== ===== Summary =====
-At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non providentsimilique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fugaEt harum quidem rerum facilis est et expedita distinctioNam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendusTemporibus autem quibusdam et aut officiis debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et molestiae non recusandae. Itaque earum rerum hic tenetur sapiente delectusut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.+At the endthree conclusions were reached: 
 + 
 +1The system is able to head towards a target position without the need for an inverted model 
 + 
 +2Using rough and simple movement patterns looks more natural and is more stable 
 + 
 +3A comparison between both approaches rises the question whether biological movement is also just product of simpleprototypical poses instead of detailed motions
  
 ===== References ===== ===== References =====
   - Bayer, A., Schmitt, S., Günther, M., Haeufle, D.F.B. (2017): The influence of biophysical muscle properties on simulating fast human arm movements. Computer Methods in Biomechanics and Biomedical Engineering 20(8), 11-24. https://dx.doi.org/10.1080/10255842.2017.1293663   - Bayer, A., Schmitt, S., Günther, M., Haeufle, D.F.B. (2017): The influence of biophysical muscle properties on simulating fast human arm movements. Computer Methods in Biomechanics and Biomedical Engineering 20(8), 11-24. https://dx.doi.org/10.1080/10255842.2017.1293663
   - Christensen, K. B., Günther, M., Schmitt, S., Siebert, T. (2017): Strain in shock-loaded skeletal muscle and the time scale of muscular wobbling mass dynamics.  Scientific Reports 7(1), 13266. https://dx.doi.org/10.1038/s41598-017-13630-7   - Christensen, K. B., Günther, M., Schmitt, S., Siebert, T. (2017): Strain in shock-loaded skeletal muscle and the time scale of muscular wobbling mass dynamics.  Scientific Reports 7(1), 13266. https://dx.doi.org/10.1038/s41598-017-13630-7