

University of Stuttgart Institute for Modelling and Simulation of Biomechanical Systems

Motion in Man and Machine Learning to control redundant musculoskeletal systems

Syn Schmitt, May 9th, 2019

Application

We seek students who want to earn a doctorate while contributing to world-leading research in areas such as:

- Computational Cognitive Science
- Computer Graphics
- Computer Vision
- Control Systems
- Haptics
- Machine Learning
- · Micro- and Nano-Robotics
- Perceptual Inference
- Robotics

Application will open soon imprs.is.mpg.de

Deep control using a biosimulator and a biorobot

Goal:
$$\pi : \mathbf{x}_{ref} \in \mathbb{R}^d \to \mathbf{u} \in [0,1]^m$$
, $\pi(\mathbf{x}_{ref}) = \mathbf{u}_x$, data $\mathscr{D} = \{(\mathbf{u}_i, \mathbf{x}_i)\}_{i=1}^n$
Forward model to learn: $\phi : \mathbf{u} \in 0, 1^m \to \mathbf{x}_{ref} \in \mathbb{R}^d$, initial data: $\mathscr{D} = \{(\mathbf{u}_0, \mathbf{x}_0)\}$
Control policy: $\mathbf{u}_x^* = \underset{\mathbf{u} \in \mathbb{R}^m}{\operatorname{argmin}} \|\mathbf{u}\|_{\mathbf{W}}^2 + \lambda \|\mathbf{u} - \mathbf{u}_0\|_2^2$ s.t. $\phi(\mathbf{u}) = \mathbf{x}_{ref}$ (Driess et al. 2018)

Muscle-spring units as bio-inspired actuators

References

- Driess, Danny et al. (2018). "Learning to Control Redundant Musculoskeletal Systems with Neural Networks and SQP: Exploiting Muscle Properties". In: Proc. of the International Conference on Robotics and Automation.
- Schmitt, Syn, Michael Günther, and Daniel FB. Haeufle (2019). "The dynamics of the skeletal muscle: a systems biophysics perspective." In: Journal of Applied Mathematics and Mechanics (ZAMM) accepted.
- Wolfen, S. et al. (2018). "Bioinspired pneumatic muscle spring units mimicking the human motion apparatus: benefits for passive motion range and joint stiffness variation in antagonistic setups." In: 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6. DOI: 10.1109/M2VIP.2018.8600913.