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Motivation

Point-To-Point

[Abend, Bizzi, and Morasso 1982]

X (em)

Multiple points

[Harris and Wolpert 1998]

Plate-To-Plate

[Fitts 1954]

Point-To-Bar

[Berret et al. 2011]
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Motivation

e arm movements are stereotypical for pointing tasks
¢ musculoskeletal system is redundant

e evolution: development of optimal control strategies
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Overview

Inputu

AT

Neural policy Biological arm model
(Bayesian optimization)

~

Cost function

Which cost function shall be used (optimality criteria)?

317



University of Stuttgart
Germany

Arm Model

Six lumped Hill-type muscles
Monoarticular shoulder muscles (anteversion and retroversion)
Biarticular muscles (anteversion and retroversion)

Monoarticular elbow muscles (flexor and extensor)
Two joint angles
Open loop control

Hatze activation dynamics
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Cost Functions

Kinematic models

T
Angle acceleration:  Jacc = [ (¢ +92) dt
0
Hand jerk:  Jyy = [ (%2 +22)dt

Angle jerk:  Jag =
Energetic models

T
Energy:  Jgn=/(l¢-T11+ 1y -121)dt
0

Hybrid models

T
Hybrid jerk and energy:  Jyg = [(I¢- 711+ lir-72l)dt+1073-
0

Dynamic models
T

Torque: ]T:f(r%-v-r%]dt
0

T
Torque change:  Jrc = f(r‘% +1"%) dt
0

Neural models
6

Effort: JEFF= X ulz
i=1

T
R,
({((pz i ]dt
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Bayesian Optimization

______ == objective in (f()
observation (x) i 58]

¥_acquisition max

acquisition function (u( )

t=3

new observation (x,)

posterior mean (u())

posterior uncertainty
() £0() Y

[Brochu, Cora, and De Freitas 2010]
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Bayesian Optimization

Algorithm Bayesian optimization algorithm

forn=1,2,... do
select muscle stimulation u,, € R® by optimizing the acquisition function aycs
up = argmaxaycg(4;2n-1)
ueu
Run dynamic simulation of musculoskeletal system to obtain &(uy)
Evaluate the cost function J(¢(uy))
Augment the data 2, = 2,1 U {(un, J(E(up))}
Update Gaussian process model of the cost function

end for
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Workflow

Y

I Bayesian Optimization |

ue 0,1

I Simulation of the Arm Model I

Y59, 71, T2, )

Cost function I

Error €
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Experimental Results

Experimental Setup Recorded Trajectories
Bar O [ ‘ .
= —0.2]| .
B 0
Q
—0.4 =

0.3 0.4 0.5

[Berret et al. 2011]
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Numerical Setup

Numerical Setup External Task Constraint

Jrotal = llx7=x* 112 +0.01- Jopt (1)

x7 : reached x-position of the hand
x* : desired horizontal end position
(location of the bar) [Li and Todorov 2007]
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Take Home Message

evidence that human movement is optimal

evidence for composite cost functions

potential of point-to-manifold experiments
to show optimality

Y (cm)

e Bayesian optimization as representation of
natural learning

e it is necessary to use muscle systems for
optimality investigations rather than torque-
driven systems
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Take Home Message

evidence that human movement is optimal

evidence for composite cost functions

potential of point-to-manifold experiments
to show optimality

e Bayesian optimization as representation of
natural learning

e it is necessary to use muscle systems for

optimality investigations rather than torque-
driven systems
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Take Home Message

evidence that human movement is optimal

evidence for composite cost functions

potential of point-to-manifold experiments
to show optimality

Bayesian optimization as representation of
natural learning

it is necessary to use muscle systems for
optimality investigations rather than torque-
driven systems
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Take Home Message

evidence that human movement is optimal

evidence for composite cost functions

potential of point-to-manifold experiments
to show optimality

* Bayesian optimization as representation of
natural learning

e it is necessary to use muscle systems for
optimality investigations rather than torque-
driven systems
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Take Home Message

evidence that human movement is optimal

evidence for composite cost functions

potential of point-to-manifold experiments
to show optimality

e Bayesian optimization as representation of
natural learning

* it is necessary to use muscle systems for

optimality investigations rather than torque-
driven systems
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