

imprs-is

Institute for Modelling and Simulation of Biomechanical Systems (IMSB)

Optimality Principles in Arm Movements

Isabell Wochner, May 9th 2019

Motivation

[Harris and Wolpert 1998]

Plate-To-Plate [Fitts 1954]

Point-To-Bar [Berret et al. 2011]

Motivation

- · arm movements are stereotypical for pointing tasks
- musculoskeletal system is redundant
- evolution: development of optimal control strategies

Overview

Which cost function shall be used (optimality criteria)?

Arm Model

Six lumped Hill-type muscles

Monoarticular shoulder muscles (anteversion and retroversion)

Biarticular muscles (anteversion and retroversion)

Monoarticular elbow muscles (flexor and extensor)

Two joint angles

Open loop control

Hatze activation dynamics

Cost Functions

Kinematic models $J_{\text{ACC}} = \int_{0}^{T} \left(\ddot{\varphi}^2 + \ddot{\psi}^2 \right) dt$

Angle acceleration:

Hand jerk: $J_{\text{HJ}} = \int_{0}^{T} (\ddot{x}^2 + \ddot{z}^2) dt$

Angle jerk: $J_{AJ} = \int_{1}^{T} (\ddot{\varphi}^2 + \ddot{\psi}^2) dt$

Energetic models

Eneray:

$$J_{\mathsf{EN}} = \int_{0}^{T} \left(|\dot{\varphi} \cdot \tau_{1}| + |\dot{\psi} \cdot \tau_{2}| \right) dt$$

Dynamic models Torque: $J_{\mathsf{T}} = \int_{0}^{T} \left(\tau_1^2 + \tau_2^2\right) dt$ Torque change: $J_{\text{TC}} = \int_{-1}^{T} (\dot{\tau}_1^2 + \dot{\tau}_2^2) dt$

Neural models Effort: $J_{\text{EFF}} = \sum_{i=1}^{6} u_i^2$

Hybrid models

Hybrid jerk and energy: $J_{JE} = \int_{0}^{T} \left(|\dot{\psi} \cdot \tau_{1}| + |\dot{\psi} \cdot \tau_{2}| \right) dt + 10^{-3} \cdot \int_{0}^{T} \left(\ddot{\psi}^{2} + \ddot{\psi}^{2} \right) dt$

Bayesian Optimization

[Brochu, Cora, and De Freitas 2010]

Bayesian Optimization

Algorithm Bayesian optimization algorithm

for n = 1, 2, ... do

select muscle stimulation $u_n \in \mathbb{R}^6$ by optimizing the acquisition function a_{UCB}

```
u_n = \operatorname*{argmax}_{u \in \mathcal{U}} a_{\mathrm{UCB}}(u; \mathcal{D}_{n-1})
```

Run dynamic simulation of musculoskeletal system to obtain $\xi(u_n)$

```
Evaluate the cost function J(\xi(u_n))
```

```
Augment the data \mathcal{D}_n = \mathcal{D}_{n-1} \cup \{(u_n, J(\xi(u_n)))\}
```

Update Gaussian process model of the cost function

end for

Workflow

Experimental Results

[Berret et al. 2011]

Numerical Setup

Numerical Setup

External Task Constraint

$$J_{\text{total}} = ||x_T - x^{\star}||^2 + 0.01 \cdot J_{\text{opt}}$$
 (1)

 x_T : reached x-position of the hand x^* : desired horizontal end position (location of the bar) [Li and Todorov 2007]

- · evidence that human movement is optimal
- · evidence for composite cost functions
- potential of point-to-manifold experiments to show optimality
- Bayesian optimization as representation of natural learning
- it is necessary to use muscle systems for optimality investigations rather than torquedriven systems

- · evidence that human movement is optimal
- · evidence for composite cost functions
- potential of point-to-manifold experiments to show optimality
- Bayesian optimization as representation of natural learning
- it is necessary to use muscle systems for optimality investigations rather than torquedriven systems

- · evidence that human movement is optimal
- · evidence for composite cost functions
- potential of point-to-manifold experiments to show optimality
- Bayesian optimization as representation of natural learning
- it is necessary to use muscle systems for optimality investigations rather than torquedriven systems

- · evidence that human movement is optimal
- · evidence for composite cost functions
- potential of point-to-manifold experiments to show optimality
- Bayesian optimization as representation of natural learning
- it is necessary to use muscle systems for optimality investigations rather than torquedriven systems

- · evidence that human movement is optimal
- · evidence for composite cost functions
- potential of point-to-manifold experiments to show optimality
- Bayesian optimization as representation of natural learning
- it is necessary to use muscle systems for optimality investigations rather than torquedriven systems

References

Abend, William, Emilio Bizzi, and Pietro Morasso (1982). "Human arm trajectory formation." In: Brain: a journal of neurology 105.Pt 2, pp. 331–348. Berret, Bastien et al. (2011). "Manifold reaching paradigm: how do we handle target redundancy?" In: Journal of Neurophysiology 106.4, pp. 2086–2102. Brochu, Eric, Vlad M Cora, and Nando De Freitas (2010). "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning." In: arXiv:1012.2599.

Fitts, Paul M (1954). "The information capacity of the human motor system in controlling the amplitude of movement." In: Journal of experimental psychology 47.6, p. 381.

Harris, Christopher M and Daniel M Wolpert (1998). "Signal-dependent noise determines motor planning". In: Nature 394.6695, p. 780.

Li, Weiwei and Emanuel Todorov (2007). "Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system". In: International Journal of Control 80.9, pp. 1439–1453.

Questions?